Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Modeling of progressive interface failure of fiber reinforced soil
ZHANG Cheng cheng1, ZHU Hong hu1,2, TANG Chao sheng1, SHI Bin1
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;2. Nanjing University High tech Institute at Suzhou, Suzhou 215123, China
Download:   PDF(1522KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The interaction mechanism between discrete fibers and soil mass in fiber reinforced soil was investigated in order to better understand the failure mechanism of fiber reinforced soil. A three parameter shear stress strain model of fiber/soil interface was described to predicte the progressive failure of discrete fibers in reinforced soil. The analysis identified five successive phases during the pull out of a single fiber from soil matrix. Closed form solutions of the tensile force, displacement and interfacial shear stress were obtained for each of the pull out phases. The effectiveness of the proposed model was verified by single fiber pull out test results. The ratio of the displacements generated by two transitional pullout phases to the total displacement was proposed to quantify the significance of the progressive failure of a fiber/soil interface. Results from a series of parametric studies reveal that the progressive failure of the fiber/soil interface becomes more significant with increasing length to diameter ratio or decreasing the ratio of fiber elastic modulus to fiber/soil interface stiffness. The parameters of the fiber/soil interface obtained from the proposed model can serve as input parameters for discrete framework of fiber reinforced soil that requires independent evaluation of soil and fiber/soil interface.



Published: 29 October 2015
CLC:  TU 43  
Cite this article:

ZHANG Cheng cheng, ZHU Hong hu, TANG Chao sheng, SHI Bin. Modeling of progressive interface failure of fiber reinforced soil. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1952-1959.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008 973X.2015.10.018     OR     http://www.zjujournals.com/eng/Y2015/V49/I10/1952


纤维加筋土界面渐进性破坏模型

为了更深入地揭示解纤维加筋土的破坏机理,研究纤维加筋土中纤维和土体的相互作用机理.提出利用纤维/土体界面切应力 切应变的三参数模型,描述离散纤维在加筋土中的渐进性破坏特性.该模型将单根纤维在加筋土中的拉拔过程分为5个典型阶段,给出各个阶段纤维轴力、位移、界面切应力的解析解.通过单根纤维拉拔试验,验证了该模型的有效性.提出用2个拉拔过渡阶段产生的位移占总位移的比值来评价界面的渐进性破坏特征,对相关的影响因素进行一系列的参数分析.结果表明:纤维的长径比越大或纤维弹性模量与纤维/土体界面剪切刚度比越小,则纤维/土体界面渐进性破坏特征越显著.由该模型得到的纤维/土体界面力学指标可以作为纤维加筋土力学模型的输入参数,通过单独评价土体强度与纤维/土体界面强度来反映纤维加筋土的宏观力学特性.

[1] 李广信,陈轮,郑继勤,等.纤维加筋粘性土的试验研究[J].水利学报,1995(6): 31-36.
LI Guang xin,CHEN Lun,ZHENG Ji qin,et al. Experimental study on fiber reinforced cohesive soil [J]. Journal of Hydraulic Engineering,1995(6): 31-36.
[2] 介玉新,李广信,陈轮.纤维加筋土和素土边坡的离心模型试验研究[J].岩土工程学报,1998,20(4): 15-18.
JIE Yu xin,LI Guang xin,CHEN Lun. Study of centrifugal model tests on texsol and cohesive soil slopes [J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 15-18.
[3] CONSOLI C N,VENDRUSCOLO M A,PRIETTO P D M. Behavior of plate load tests on soil layers improved with cement and fiber [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003,129(1): 96-101.
[4] MILLER C J,RIFAI S. Fiber reinforcement for waste containment soil liners [J]. Journal of Environmental Engineering,2004,130(8): 981-985.
[5] MAHER M H,GRAY D H. Static response of sand reinforced with randomly distributed fibers [J]. Journal of Geotechnical Engineering,1990,116(8): 1661-1677.
[6] PRABAKAR J,SRIDHAR R S. Effect of random inclusion of sisal fibre on strength behaviour of soil [J]. Construction and Building Materials,2002,16(2): 123-131.
[7] MICHALOWSKI R L,CERMAK J. Triaxial compression of sand reinforced with fibers [J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(2): 125-136.
[8] YETIMOGLU T,SALBAS O. A study on shear strength of sands reinforced with randomly distributed discrete fibers [J]. Geotextiles and Geomembranes,2003,21(2): 103-110.
[9] YETIMOGLU T,INANIR M,INANIR O E. A study on bearing capacity of randomly distributed fiber reinforced sand fills overlying soft clay [J]. Geotextiles and Geomembranes,2005,23(2): 174-183.
[10] 杨小礼,李亮.条形基础下纤维加筋土地基承载力初探[J].地下空间,2000,20(1): 58-60.
YANG Xiao li,LI Liang. Primary investigation on bearing capacity of fiber reinforced soil ground under strip foundation [J]. Underground Space,2000,20(1): 58-60.
[11] 唐朝生,施斌,高玮,等.含砂量对聚丙烯纤维加筋黏性土强度影响的研究[J].岩石力学与工程学报,2007,26(增1): 2968-2973.
TANG Chao sheng,SHI Bin,GAO Wei,et al. Study on effects of sand content on strength of polypropylene fiber reinforced clay soil [J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(Suppl. 1): 2968-2973.
[12] 徐洪钟,彭轶群,赵志鹏,等.短切玄武岩纤维加筋膨胀土的试验研究[J].建筑科学,2012,28(9): 44-47.
XU Hong zhong, PENG Yi qun, ZHAO Zhi peng, et al. Experimental study on short Basalt fiber reinforced expansive soil [J]. Building Science, 2012, 28(9): 44-47.
[13] 张丹,许强,郭莹.玄武岩纤维加筋膨胀土的强度与干缩变形特性试验[J].东南大学学报:自然科学版,2012,42(5): 975-980.
ZHANG Dan, XU Qiang, GUO Ying. Experiments on strength and shrinkage of expansive soil with basalt fiber reinforcement [J]. Journal of Southeast University: Natural Science Edition, 2012, 42(5): 975-980.
[14] 吴燕开,牛斌,桑贤松.随机分布剑麻纤维加筋土力学性能试验研究[J].水文地质工程地质,2012,39(6): 77-81.
WU Yan kai,NIU Bin,SANG Xian song. Experimental study of mechanical properties of soil randomly included with sisal fiber [J]. Hydrogeology and Engineering Geology,2012,39(6): 77-81.
[15] DI PRISCO C, NOVA R. A constitutive model for soil reinforced by continuous threads [J]. Geotextiles and Geomembranes, 1993,12(2):  161-178.
[16] DIAMBRA A, IBRAIM E, WOOD D M, et al. Fiber reinforced sands: experiments and modeling [J]. Geotextiles and Geomembranes, 2010,28(3): 238-250.
[17] 王磊,朱斌,李俊超,等.一种纤维加筋土的两相本构模型[J].岩土工程学报,2014,36(7): 1326-1333.
WANG Lei,ZHU Bin,LI Jun chao,et al. A constitutive model for fiber reinforced soil [J]. Chinese Journal of Geotechnical Engineering,2014,36(7): 1326-1333.
[18] MICHALOWSKI R L. Limit analysis with anisotropic fibre reinforced soil [J]. Géotechnique,2008,58(6): 489-501.
[19] 唐朝生,施斌,高玮,等.纤维加筋土中单根纤维的拉拔试验及临界加筋长度的确定 [J]. 岩土力学,2009,30(8): 2225-2230.
TANG Chao sheng,SHI Bin,GAO Wei,et al. Single fiber pull out test and the determination of critical fiber reinforcement length for fiber reinforced soil [J]. Rock and Soil Mechanics,2009,30(8): 2225-2230.
[20] TANG C S,SHI B,ZHAO L Z. Interfacial shear strength of fiber reinforced soil [J]. Geotextiles and Geomembranes,2010,28(1): 54-62.
[21] 李建,唐朝生,王德银,等.基于单根纤维拉拔试验的波形纤维加筋土界面强度研究[J].岩土工程学报,2014,36(9): 1696-1704.
LI Jian,TANG Chao sheng,WANG De yin, et al. Study on the interfacial shear strength of wave shape fiber reinforced soil through single fiber pullout tests [J]. Chinese Journal of Geotechnical Engineering,2014,36(9): 1696-1704.
[22] 唐朝生,施斌,顾凯.纤维加筋土中筋/土界面相互作用的微观研究[J].工程地质学报,2011,19(4): 610-614.
TANG Chao sheng,SHI Bin,GU Kai. Microstructural study on interfacial interactions between fiber reinforcement and soil [J]. Journal of Engineering Geology,2011,19(4): 610-614.
[23] LI C L,ZORNBERG J G. Mobilization of reinforcement forces in fiber reinforced soil [J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(1): 107-115.
[24] POTTS D M,ZDRAVKOVI L. Finite element analysis in geotechnical engineering: application [M]. London: Thomas Telford,1999.
[25] ZORNBERG J G. Discrete framework for limit equilibrium analysis of fibre reinforced soil [J]. Geotechnique,  2002,52(8): 593-604.
[26] ZHU H H,ZHANG C C,TANG C S,et al. Modelling the pullout behavior of short fiber in reinforced soil [J]. Geotextiles and Geomembranes,2014,42(4): 329-338.
[27] 朱鸿鹄,张诚成,裴华富,等.GFRP土钉拉拔特性研究[J].岩土工程学报, 2012, 34(10): 1843-1849.
ZHU Hong hu,ZHANG Cheng cheng,PEI Hua fu,et al. Pullout mechanism of GFRP soil nails [J]. Chinese Journal of Geotechnical Engineering,2012,34(10): 1843-1849.
[28] SAWICKI A. Modelling of geosynthetic reinforcement in soil retaining walls [J]. Geosynthetics International,1998,5(3): 327-334.

[1] TAN Qing, ZHANG Yi-chao, XIA Yi-min, GAO Hao. Experimental research of TBM disc cutter penetrate saturated rock[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 914-921.
[2] LI Fei, ZHU Hong hu, ZHANG Cheng cheng, SHI Bin. Experimental study on feasibility of fiber Bragg grating-based foundation deformation monitoring[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 204-211.
[3] LIU Hai long, ZHOU Jia wei, CHEN Yun min, LI Yu chao, ZHAN Liang tong. Evaluation of municipal solid waste landfill stabilization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2336-2342.
[4] JIN Wei feng,ZHANG Li you,CHEN Xiao liang,CHENG Ze hai. Study on liquefaction simulation of coupled particle-fluid assembly subject to bi-directional cyclic loading[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2135-2142.
[5] YING Hong wei, ZHU Cheng wei, GONG Xiao nan. Analytic solution on seepage field of underwater tunnel considering grouting circle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1018-1023.
[6] ZENG Chen, SUN Hong-lei, CAI Yuan-qiang, CAO Zhi-gang. Dynamic response of  lined tunnel in saturated soil due to  moving load[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 511-521.
[7] ZHANG Zhen-ying, YAN Li-jun. Correlation properties of the deformation and the shear strength of  fresh municipal solid waste[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1962-1967.
[8] HUANG Da-zhong, XIE Kang-he, YING Hong-wei.
Semi-analytical solution for two-dimensional steady seepage around foundation pit in soil layer with anisotropic permeability
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1802-1808.
[9] ZENG Chen, SUN Hong-lei, CAI Yuan-qiang, CAO Zhi-gang. Dynamic response of  lined tunnel in saturated soil due to  moving load[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1-2.
[10] LI Da-peng,TANG De-gao,YAN Feng-guo,HUANG Mu. Mechanics of deep excavation’s spatial effect and soil pressure calculation method considering its influence[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(9): 1632-1639.
[11] XIANG Tian-yong, ZHANG Zheng-hong, WEN Min-jie, SHAN Sheng-dao. Dynamic response of a spherical biogas digester in saturated soil[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(2): 242-248.
[12] WEN Min-jie, XU Jin-ming, LI Qiang. Comparative analysis for torsional vibration of an end-bearing pile in saturated viscoelastic soil[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(12): 2146-2152.
[13] LING Dao-sheng, JIANG Zhu-jin, ZHONG Shi-ying, YANG Jian-zhong. Numerical study on impact of lunar lander footpad against simulant lunar soil[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(7): 1171-1177.
[14] GAO Hua-xi, WEN Min-jie, ZHANG Bin. Dynamic response of nearly saturated viscoelastic soil with circular tunnel[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 615-621.
[15] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(3): 465-471.